Black hole spin measurements of Cygnus X-1 using the continuum-fitting method

Speaker: Xueshan Zhao (NAOC) December 07, 2021

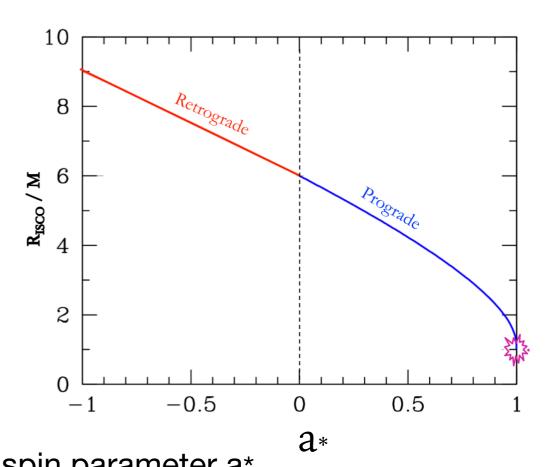
- Background introduction
- The X-ray continuum-fitting method
- Cygnus X-1
- Summary

Background

No-Hair Theorem

1. Mass: M

IMPORTANT


2. Spin: $a_* = ac/GM = J(c/GM^2) - 1 \le a_* \le 1$

3. Charge neutralized and unimportant

Theoretical Foundation

Risco (ISCO: inner-most stable circular orbit) R_{in} (the inner radius of the disk) =Risco R_{in} (the inner radius of the disk) =RiscoRISCO is directly related to the dimensionless spin parameter a*

(Bardeen et al. 1972)

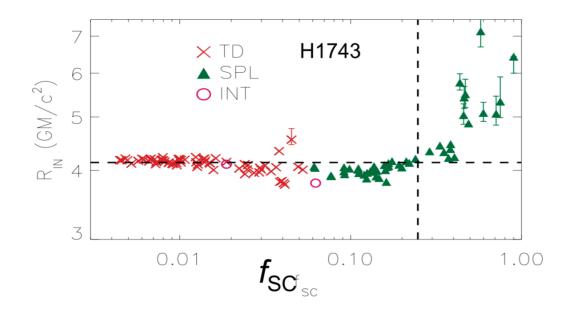
Background

• Two Widely-used Methods of Measuring Spin

1. Fe line Method (X-ray reflection fitting method)

(Fabian at al. 1989)

Fitting the relativistically-broadened profile of the 6.4 keV Fe K line Both stellar and supermassive black holes


2. Continuum Fitting Method (Zhang, Cui & Chen 1997) Fitting the **thermal component** of the accretion disk **Stellar black holes**

Our adopted method

(Gou et al. 2011)

Continuum-fitting Method

- Requirements
 - 1. Thin disk: H/R < 0.1 equivalent to $L/L_{Edd} < 0.3$ (McClintock et al. 2006)
 - 2、Spectrum dominated by accretion disk component

simpl: fsc<=25%

fsc: scattering fraction, The fraction of the seed photons that are scattered into the power-law tail (Steiner et al. 2009a,b)

3、Accurate system parameters: M, i and D

- Galactic high mass BH X-ray binary
- One of the brightest and most persistent celestial X-ray sources
- The compact primary in Cygnus X-1 was the first black hole to be established via dynamical observations.

Distance (kpc) Inclination (deg) Mass (M_{\odot})			Reference	
1.86	27.1	14.8	Reid et al. 2011; Orosz et al. 2011	

• The History of Spin Measurement

a rapidly spinning black hole

continuum	n-fitting method	Fe-Ka line fitting method			
>0.95	Gou et al. 2011	0.95-0.984	Fabian et al. 2012		
>0.983	Gou et al. 2014	>0.83	Tomsick et al. 2014		
		~0.9	Duro et al. 2016		
		0.93-0.96	Walton et al. 2016		

$Cygnus \ X-1 \ \ ({\rm Galactic \ high \ mass \ BH \ X-ray \ binary})$

• Newly-obtained Dynamical Parameters


Distance (kpc) Inclination (deg) Mass (M_{\odot})				Reference		
Old	1.86	27.1	14.8	Reid et al. 2011; Orosz et al. 2011		
New	2.22	27.5	21.2	Miller-Jones et al. 2021		

a*?

Spectra Fit

Xspec Model:

 $CRABCOR * CONSTANT * TBABS [SIMPLR \otimes KERRBB2 + KERRDISK + KERRCONV \otimes (IREFLECT \otimes SIMPLC)]$

SIMPL

(an advanced empirical Comptonization model)

IREFLECT

(a convolution model for reflection from ionized material)

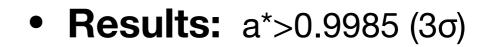
KERRDISK

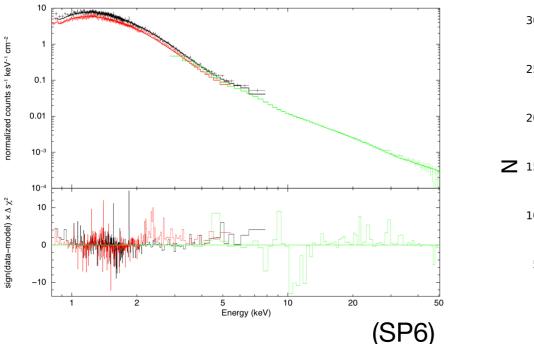
(accretion disk line emission)

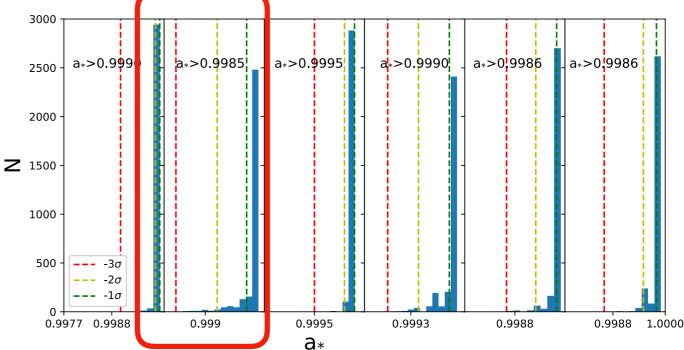
CRABCOR (correcting for calibration deviations)

CONSTANT (reconciling calibration discrepancies between different detectors)

TBABS (an ISM absorption model)


KERRCONV (smearing the spectrum)


Results


• **Data:** Presented in Gou et al. (2011) and Gou et al. (2014)

Number	ObsID	Mission	Detector	Energy Band (keV)	UT	T_{exp} (s)	I (Crab)
SP1	10408000 & P10412	ASCA & RXTE	GIS & PCA	$0.78.0\ \&\ 2.545.0$	1996 May 30 $06{:}43{:}16\ \&\ 07{:}51{:}29$	2547 & 2240	0.80
SP2	12472 & P96378	Chandra & RXTE	HETG(CC) & PCA	$0.88.0\ \&\ 2.950$	2011 Jan 6 14:06:40–14:35:44	455 & 1744	0.52
SP3	12472 & P96378	Chandra & RXTE	HETG(CC) & PCA	$0.88.0\ \&\ 2.950$	2011 Jan 6 15:44:16–16:09:52	398 & 1536	0.61
SP4	12472 & P96378	Chandra & RXTE	HETG(CC) & PCA	$0.88.0\ \&\ 2.950$	2011 Jan 6 17:15:28–17:43:44	455 & 1744	0.57
SP5	12472 & P96378	Chandra & RXTE	HETG(CC) & PCA	$0.88.0\ \&\ 2.950$	2011 Jan 6 18:19:44–19:17:52	455 & 1744	0.38
SP6	12472 & P96378	Chandra & RXTE	$\operatorname{HETG}(\operatorname{CC})$ & PCA	$0.8\!\!-\!\!8.0\ \&\ 2.9\!\!-\!\!50$	2011 Jan 6 19:53:36–20:50:08	455 & 1744	0.38

- **Parameters:** Newly-obtained parameters
- Error Analysis: Monte Carlo

1. We re-analyze six archival spectra of the black hole X-ray binary Cygnus X-1, which were originally presented in Gou et al. (2011) and Gou et al. (2014), to constrain the black hole spin. These data rigorously satisfy the selection criterion $f_{sc} \leq 25\%$.

2、We adopt up-to-date values of three key dynamical parameters M, i, and D.

3、The key model we utilized is a fully relativistic thin disk model KERRBB2.

4. Monte Carlo simulations are performed in order to estimate the error in a due to the combined uncertainties of M, i, and D.

5. We arrive at our final result, a > 0.9985 at the 3 σ level of confidence, which confirms the extreme spin of the black hole in Cygnus X-1.

Thanks!